NSW Coastal Conference

Collaborative research to understand sea level rise around South Korea using cutting-edge techniques

Dr Phil Watson Honorary Research Fellow (CERF – JCR) 30 October 2019

Outline of Presentation

Context

General introduction to sea-level rise (SLR) Cutting-edge analysis techniques for SLR Available data sources in South Korea Key results and their implications for South Korea Augmenting current knowledge

Outline of Presentation

Context

South Korea	Interesting facts
Seoul (Capital)	
Population ≈ 51.5M (2019)	
Area ≈ 100.2 km ² (1.5 X size of 1	Tasmania)
Comprised of 3,358 officially nan	ned islands
Most technologically advanced c	ountry in the world
12 th largest economy in the world	J (2019)

Outline of Presentation

Context

General introduction to sea-level rise (SLR)

Cutting-edge analysis techniques for SLR Available data sources in South Korea Key results and their implications for South Korea Augmenting current knowledge

Introduction to sea level rise...

Ocean water levels in any location will be principally governed by 2 key classes of influencing phenomena

- **Type 1 influence:** change the ocean water surface by pushing it up and down, but, do not change the mass of the ocean (dynamic influences)
- Type 2 influence: directly change the mass of the ocean and are largely very long cycle influences (detected as changes in the trend of mean sea level over time)

Introduction to sea level rise...

Type 1 influences include:

- Seasonal processes
- Tidal harmonics (up to \approx 18.6 years)
- Pole tide (annual and ≈ 433-day signal)
- Global and regional climate modes
- Storm influences (storm surge and waves)
- Long period waves (e.g., Rossby, shelf waves)
- Fluctuations in ocean currents
- Quasi 60-year ocean oscillation
- Others...

Introduction to sea level rise...

Type 2 influences include:

- Long timescale solar cycles (Milankovitch ≈ 120kyr)
- Anthropogenic climate change (post \approx 1750)

Both processes lead to global sea level rise through melting of snow and ice reserves and thermal expansion of the ocean water mass.

Outline of Presentation

Context

Outline of Presentation

Context

Outline of Presentation

Context

	Key limitations of work to date
-	The maximum-length data sets available for this analysis around the South Korean Peninsula are 58 years (1960 to 2018 at Incheon, Mokpo, and Busan), somewhat short of the optimal minimum lengths suggested for mean sea-level analysis
-	Such records are not able to resolve (and therefore remove) such signals as the quasi-60-year ocean oscillation at the regional level, specific to South Korea
	The ALT-TG technique is only a proxy for VLM

Outline of Presentation

Context

Augmenting current knowledge

Key research initiatives might include:

- Further training and knowledge sharing on sea level rise with KIOST, including use of the "TrendSLR" analysis package developed specifically for application to South Korean mean sea level records
- Extending analysis across Yellow Sea and to mainland China through collaboration with Korea – China Joint Ocean Research Center (suitable for publication in Ocean and Polar Research)

Augmenting current knowledge

Key research initiatives might include:

- Determining how best to utilise results to inform strategic planning, adaptation planning and design purposes into the future
- Developing a national annual SLR web-based reporting system

Acknowledgements Special thanks for providing the impetus for this research: US Coastal Education and Research Foundation Korea Institute of Ocean Science and Technology Korea Hydrographic And Oceanographic Agency Korean Society of Coastal Disaster Prevention

Thank you

감사합니다